
Agheli 1Kian Agheli

Professor Richard Peters

English –

December

Research Paper – Final Draft

The Impact of the C Programming Language on The Past Fifty Years of Computing

The C Programming Language was initially developed between 1969 and 1979. It was further re ned

when standardized by the American National Standards Institute in 1989. In the twenty years between

birth and standardization, C became the dominant programming language, shaping the environments

it entered and the programmers who used it. In the time between standardization and now, the

majority of computing systems have been designed to leverage C.

A programming language is a format for expressing logic. The programming language that a

computer natively understands, called an “instruction set,” is composed of minuscule operations.

Across all kinds of digital computers, these allow for logical evaluation, performing arithmetic, man-

agement of information, and general hardware control (Intel), (Arm), and (Waterman).

These instructions are expressed in binary digits, commonly contracted to “bits” (Mackenzie

). Unlike a decimal digit, which may be a whole value between 0 and 9, a bit may be either 0 or

1. In digital computing’s infancy, series of these were manually “toggled in” (Post), using physical

switches and buttons. Save for theories put on paper, such as the works of Ada Lovelace (Menabrea

) and Alan Turing (Turing), this was the rst form of computer programming.

As hardware and software both advanced, programmers became able to write programs textu-

ally. They would physically interact with a teleprinter, essentially a typewriter which would send key

strokes to and print output from a computer. They would digitally interact with software to manage

and store teleprinter input, naturally named “text editors.” Then, the stored input from the teleprinter

would be passed to a program called an “assembler,” to further interpret the saved input. The tex-

tual representations of computer instructions, such as “ ,” would be encoded as real computer in-

structions, such as “00100001 01101010” (Nelson), (Ritchie), (Thompson a), (Thompson b),

(Thompson c). The text which programmers would provide to assemblers came to be called “assem-

bly language.” ().

Assembly language directly correlates to a computer’s instruction set, meaning that the pro-

grammer must textually manage each operation in a program. Doing so is less tedious than ipping

switches hundreds of times over, but still tedious (Nather), (Post). Computer scientists found

that a computer may instead be provided a text which vaguely describes the intended logic of a pro-

gram. Though the computer has been provided less information, it may have enough produce a rea-

sonable translation of the abstract program to its own instruction set. As opposed to an assembler, the

software which performs this kind of interpretation is called a “compiler” (Aho).

Agheli 2

Figure . Left: the control panel of an early digital computer, designed to be programmed through the

toggling of several switches (Shirri f). Top right: A Teletype-branded teleprinter (Reinhold). Bot-

tom right: A punch card, at a time the most economical method of storing program data (Jones).

Compiling a program from an abstract— “high-level”— language is comparable to translating

expressions from one human language to another: it may be done, loosely (Aho). With this loss in

accuracy comes two bene ts: programsmay be written in less time, and structured to read closer to hu-

man language; and programs may be interpreted with similar logical meanings on architecturally di -

ferent computers. These bene ts are so strong that the vast majority of today’s software is written in

high-level programming languages (), (Backus).

C was among the languages developed to transition from programming in assembly to a high-

level language (Backus), (Ritchie). It began its development at Bell Laboratories, a subsidiary of

, “as a system implementation language for the nascent Unix operating system” (Ritchie). Unix

was a set of software to enable a singular computer to run multiple programs concurrently — as op-

posed to one at a time. Further, it ful lled the basic infrastructure needed tomake hardware accessible

in software (Ritchie), (Ritchie).

Agheli 3

#include <stdio.h>

int

main()

{

puts("Hello.");

return 0;

}

.data

msg: .asciz "Hello.\n"

len = . - msg - 1

.text

.global _start

_start:

pushl $len

pushl $msg

pushl $1

movl $4, %eax

call do_syscall

addl $12, %esp

pushl $0

movl $1, %eax

call do_syscall

do_syscall:

int $0x80

ret

Figure . Left: A trivial program written in C for printing “Hello.” to the screen. Written by the author.

Right: A program written in Assembly for the same purpose. It assumes a speci c version of modern

Unix and a -architecture computer. Adapted from (Sommers).

Unix and C were designed around each-other. C was designed to leverage the hardware ab-

stractions provided by Unix, andmuch of Unix itself came to be written in C (Ritchie). This bond al-

lowed C and Unix to form the rst “portable” programming environment. In such an environment, pro-

grams written for one set of hardware may run largely or wholly unmodi ed on another set of hard-

ware (Johnson). Unix and C — and many programs written in C to run on top of Unix — could

then be ported to a new machine with relative ease. “[T]hough originally unplanned,” Unix’s authors

discovered it “to be possible to produce an operating system and set of software that runs on sev-

eral machines and whose expression in source code is, except for a few modules, identical on each

machine” (Ritchie).

Despite C and Unix forming a revolutionary product, they were distributed liberally to univer-

sities. was not oblivious to C’s value, however their hand was forced. C and Unix were to be dis-

tributed liberally, or not distributed at all.

Agheli 4

held a government-sanctioned monopoly on the telephone system. The terms

of ’s agreement with the government prevented it from selling software, which

meant that it could not sell as a product. Instead, beginning in 1974 with Fifth

Edition, and especially with Sixth Edition, licensed for use in universities

for a nominal distribution fee. … ’s release of into universities greatly con-

tributed to the popularity and use of the operating system, and by 1977, was run-

ning at some 500 sites, including 125 universities in the United States and several other

countries. (Kerrisk)

Due to C and Unix’s bonded success, in tandem with an a fordable price, C became the preferred pro-

gramming language in education.

This liberty in distribution led to several derivative versions of Unix. At University of Califor-

nia, Berkeley, Unix was modi ed and re-written over several years. It became considered by its authors

as an independent, compatible operating system. By 1983, the system had become a substantial super-

set of Unix. The “Berkeley Software Distribution” itself became a licensed product, eventually the basis

for “[s]everal commercial OSes [operating systems]” (Salus a).

Come 1988, independent recreations of Unix had been released, under totally free terms. They

were largely compatible with Unix, but contained no actual Unix source code. These could be dis-

tributed without restriction. This was in stark contrast to ’s selective licensing to universities. Fol-

lowing legal dispute with , Berkeley Software Distribution itself became free to distribute, spawn-

ing the family of operating systems (Salus b), (OpenBSD), (NetBSD), (FreeBSD). As

Unix became both feature-rich and free to license, its in uence spread further. By necessity, where

Unix and its derivatives went, C went too.

As C became increasingly popular outside of Bell Labs, “it was clear that C needed formal stan-

dardization” (Ritchie). The language informally documented did not wholly match the language

in use (Kernighan) (Ritchie). As of 1989, C became formally standardized by the American Na-

tional Standards Institute (), (). This formal standard became integral to the contin-

ued growth of C’s popularity. “[T]he incipient use of C in projects subject to commercial and govern-

ment contract meant that the imprimatur of an o cial standard was important” (Ritchie). Sepa-

rately, C’s sister project, Unix, became standardized (), (Harbour), (Stallman).

Thanks in large part to their standardization, Unix and C have been implemented and re-im-

plemented several times. Modern versions of Unix continue to be designed in C (Linux), (OpenBSD

), (NetBSD), (FreeBSD), (Illumos). On computers which provide services enmasse—pub-

lic access web sites; e-mail servers — these are go-to choices (StatCounter a), (Fortune). The

small computers that manage home internet connections often use the same or similar infrastructure

Agheli 5

(Dunn), (OpenWRT). In essence, Unix’s descendants enable the internet as we know it today,

and they themselves are enabled by C.

Operating

System

Server Market Share (in %)

Windows .

Linux .

.

Other .

Figure . Market share of operating systems for server use (Fortune). “Linux” is a speci c derivative

of Unix. “ ,” as written in the provided data, generally refers to -derived Unix. The distinction is

arguably made due to Linux’s overwhelming popularity.

More generally, C and Unix have become integral to commercial software development.

Among today’s most a uent software companies, Apple (Nicas) has been using C-derived lan-

guages since their acquisition of e in 1997 (Singh). e was a -derived operating

system. It was designed in a super-set of C named Objective-C. At the time of the acquisition, Apple’s

Macintosh line of computers were in need of new system software. They proceeded to use e

— implemented in C and borrowing portions of Unix— as the basis for their advancement (Reisinger

), (Singh), (Singh), (Edwards). Years after the acquisition, it became the basis for the soft-

ware behind the iPhone (Apple a), (Garling).

Before acquiring e , Apple was near bankruptcy. e saved them, and they have

since ourished. In particular, the 2007 release of the iPhone earned Apple enormous success (Martins

). Today, the iPhone itself is now uncontroversially called one of the most revolutionary products of

our time (Leswing), (Eadicicco). It’s not a stretch to say that C was and continues to be integral

to that success. Accordingly, Apple has invested heavily in their C-based infrastructure, funding the de-

velopment of a new set of compiler software (Treat), (Apple), (Apple b).

Microsoft, a company which genuinely competes with Apple for “World’s Most Valuable Com-

pany” (Klebnikov), has similar ties to C. Their premier software product, Windows (Ward), has

Agheli 6

been written in C since 1995 (Microsoft). In the quarter-century since then, Microsoft has main-

tained a compatible software environment. Aside from other features (Microsoft a), this allows

years-old programs to run largely or wholly unmodi ed on Microsoft’s latest iterations of Windows

(Finck), (Microsoft).

Individual programs, lesser in scope than operating systems, are often written in C because of

its ubiquity. Programmers intending to write accessible, performant software resort to it. Notable ex-

amples include Google’s Chrome, the most popular web browser (StatCounter b); fmpeg, an ex-

ceedingly popular video processing solution (Melanson), (Maki), (Larabel); SQLite, a set of

software included in a majority of consumer computers (SQLite); and OpenSSH, the networked

computer log-in utility bundled with most of today’s laptops (Microsoft b), (Loder). Programs

originally written in languages other than C, but that need portability, may bemachine-translated to C.

This has been most notably done with TeX (), a program for digital document typesetting, pop-

ularly used for academic papers (), (Beeton).

C’s portability is the result of serious e fort. Aside from the work of standards committees, C

has been wedged into environments far di ferent from Unix. For the sake of porting programs written

in C— “a good deal of interesting software” as early as 1976 (Ritchie), subsets of Unix would be im-

plemented on other operating systems.

As Microsoft’s operating systems took hold in the home computer market, the desire to port C

programs to them took hold just as rmly. For this purpose, Unix was rst grafted on top of -

beginning in 1989 (Zaretskii). As - was replaced by Windows, that work was carried over, re-

sulting in a multitude of projects. Most prominently, Cygwin allows a large portion of standards-com-

pliant Unix programs to run without modi cation. It maps Unix features to Windows features, and

those Unix features which have no analogue are emulated (Cygwin). MinGW is a separate but re-

lated project to port modern, publicly-availably C compilers to Windows (MinGW).

These projects enabled programmers to write programs to run on all three of the popular soft-

ware platforms — Apple’s -based Macintosh, ’s and derivatives running Microsoft’s Win-

dows, and the hardware-agnostic Unix servers (Reimer). These projects became integral to the fur-

thering of Windows’s software library. Microsoft decided to further the e fort for portability of C, by

means of the project. While the previousmethods require Unix software to bewholly re-compiled

for Windows, Microsoft’s solution provides a full Unix environment. (Microsoft c), (Microsoft d).

Agheli 7

Language Year

__

Python -

C

C++

Java - -

C# - - -

JavaScript - -

Visual Basic - - - - - -

- - -

- - - - -

Assembly Language - - - - - -

Ada

Objective-C - - -

Lisp

(Visual) Basic - -

Figure . Estimated and averaged programming language popularity over the course of a given year,

from 1988 through 2023 (). “1” marks the rst most popular, “30” marks the 30th most popular.

“(Visual) Basic” and “Visual Basic” are intentionally distinct. The former refers to a now split family of

languages. The latter refers to a speci c language from that split.

C’s in uence has permeated the evolution of programming languages. The high-level program-

ming languages which rival C’s popularity () borrow heavily from its appearance and seman-

tics. Brie y analyzing the table above, it is only these languages which have popularly ourished for

the past two decades. C++ is a direct derivative of C. Java resembles C closely, to the point at which

valid C is nearly valid Java. Python and C# each take basic syntax from C. JavaScript is intended to be

C for the web browser (Miller), (Ezick). These are the notable market competitors. Evidently, C

shaped the market for 50 years past its inception.

while return break continue

if else for

Figure . Key words with similar semantics in C, Python, C++, Java, C#, and JavaScript (Microsoft

e), (Microsoft), (Mozilla), (Python). Despite being distinct languages, some of their

semantics are similar.

Agheli 8

C’s popularity has warranted continued extension and standardization. Though the 1989 stan-

dard remains de-facto, C has been continually standardized by the International Organization for Stan-

dardization and the International Electrotechnical Commission (). C has been grown from a

singular language to a family of languages. This growth blurs the lines between C and its contempo-

raries, bringing modern considerations into the old language’s design.

As opposed to languages distinct from C, newly standardized versions of C have the bene t of

its existing software infrastructure. That infrastructure has been honed over half of a century. The au-

thors of languages operating in the samemarket as C have a lofty goal: to beat 50 years of pre-built soft-

ware, documentation, and compiler improvement. Particularly, programs written in C are as fast and

e cient as high-level programs may be. If there are better ways of generating code than modern C

compilers perform, we don’t know of them. By comparison, most other languages and their compilers

are grossly ine cient. (Pereira).

. C, Pascal, Go

. Rust, C++, Fortran

. Ada

. Java, Chapel, Lisp, Ocaml

. Swift, Haskell, C#

. Dart, F#, Racket, Hack,

. JavaScript, Ruby, Python

. TypeScript, Erlang

. Lua, JRuby, Perl

Figure . The measured energy, time, and memory e ciency of programming languages, separated

into distinct tiers (Pereira). C is in the top tier, and the rst in its class.

C is everywhere. It’s the basis for software in home computers, cell phones, Wi-Fi routers, and

web servers. Those categories arguably span the majority of computing systems people interact with

today. Despite C’s ubiquity, it is not trivial. The time before C’s standardization had no similar lan-

guage. The time since has produced derivatives, but no replacement. Before the advent of these

derivatives, C had become so universal as to be a “lingua franca” among programming languages (Arm-

strong). Modern and popular competition remains structurally and syntactically similar.

The popularity of programming languages derived from C is comparable to the popularity of

natural languages derived from Latin. In each case, the derivatives are unique, but similar enough to be

structurally and sometimes literally compatible. The gaping hole in that comparison is that, quite un-

like Latin, C is very much a living language. No computing system is complete without it.

Agheli 9

Works Cited

() American National Standard Institute; International Organization for

Standardization, American National Standard for Programming Languages – C;

/ - . International Organization for Standardization, .

(Aho) Aho, Alfred V.; Lam, Monica S.; Sethi, Ravi; Ullman, Je frey D.

Compilers: Principles, Techniques, and Tools Second Edition. Pearson

Education Limited, .

(Apple) Apple, “ Compiler Overview.” Apple, December

, developer.apple.com/library/archive/documentation/CompilerTools/

Conceptual/LLVMCompilerOverview/index.html. Accessed

November .

(Apple a) Apple, “xnu.” Github, September , github.com/apple-oss-distributions/

xnu/commit/ c a e a f b f dbd c c fd a. Accessed

November .

(Apple b) Apple, “ / Clang.” Apple, , opensource.apple.com/projects/llvm-

clang. Accessed November .

(Arm) Arm Limited. Arm® A Instruction Set Architecture Armv , for Armv -

A architecture pro le, p. . Arm Limited, March , documentation-

service.arm.com/static/ ef e d bc e bf. Accessed

November .

(Armstrong) Joe Armstrong. “The Mess We’re In.” Strange Loop Conference via YouTube,

September , https://www.youtube.com/watch?v=lKXe HUG l &t=

(Backus) J.W. Backus, R.J. Beeber, S. Best, R. Goldberg, H.L. Herrick, R.A. Hughes,

L.B. Mitchell, R.A. Nelson, R. Nutt, D. Sayre, P.B. Sheridan, H. Stern, I.

Ziller, “The Automatic Coding System for the :

Programmer’s Reference Manual.” , October . Re-published at

archive.computerhistory.org/resources/text/Fortran/ . . .acc.pdf.

Accessed December .

(Beeton) Barbara Beeton, Karl Berry, David Walden. “TeX: A Branch in Desktop

Publishing Evolution, Part ,” in Annals of the History of Computing, vol. , no. ,

pp. – . July–September . Peer-reviewed manuscript published at

www.walden-family.com/ieee/texhistory.html. Accessed December .

https://developer.apple.com/library/archive/documentation/CompilerTools/Conceptual/LLVMCompilerOverview/index.html
https://github.com/apple-oss-distributions/xnu/commit/1031c584a5e37aff177559b9f69dbd3c8c3fd30a
https://opensource.apple.com/projects/llvm-clang/
https://documentation-service.arm.com/static/606ef2575e70d934bc69e1bf
https://www.youtube.com/watch?v=lKXe3HUG2l4&t=1149
http://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf
https://www.walden-family.com/ieee/texhistory.html

Agheli 10

() Comprehensive TeX Archive Network. “What are TeX and its friends?” ,

ctan.org/tex. Accessed December .

(Cygwin) Cygwin authors. Cygwin User’s Guide,, pp. – . January , cygwin.com/

cygwin-ug-net/cygwin-ug-net.pdf. Accessed December .

(Dunn) John E. Dunn. “Most home routers lack simple Linux OS hardening security.”

Sophos Ltd, December , web.archive.org/web/ /https:/

/nakedsecurity.sophos.com/ / / /most-home-routers-lack-simple-linux-

os-hardening-security. Accessed December .

(Eadicicco) Lisa Eadicicco, “This Is Why the iPhone Upended the Tech Industry.” ,

June , time.com/ /iphone- th-anniversary/. Accessed

November .

(Edwards) Benj Edwards. “Before Mac OS X: What Was NeXTSTEP, andWhy Did People

Love It?” How-To Geek, November , www.howtogeek.com/ /

before-mac-os-x-what-was-nextstep-and-why-did-people-love-it. Accessed

December .

(Ezick) James Ezick. “Java and C similarities, by example (not a complete list).”

Cornell University, Spring , www.cs.cornell.edu/courses/cs / sp/

JavaCcomparison.html. Accessed December .

(Finck) Colin Finck. “Writing Win apps like it’s : Introduction.” GmbH,

July , building.enlyze.com/posts/writing-win -apps-like-its- -

part- . Accessed December .

(Fortune) Fortune Business Insights. Server Operating SystemMarket Volume, Share &

- Impact Analysis, By Operating System (Windows, Linux, , and

Others), By Virtualization Status (Virtual Machine, Physical, and Virtualized),

By Subscription Model (Non-paid Subscription and Paid Subscription), By

Enterprise Type (Large Enterprises and Small &Medium Enterprises), and

Regional Forecast, - . Fortune Business Insights, May ,

www.fortunebusinessinsights.com/server-operating-system-market- .

Accessed December .

(FreeBSD) freebsd.org. Accessed November .

(Garling) Caleb Garling, “iPhone Coding Language NowWorld’s Third Most Popular.”

, July , www.wired.com/ / /apple-objective-c. Accessed

November .

https://ctan.org/tex
https://cygwin.com/cygwin-ug-net/cygwin-ug-net.pdf
http://web.archive.org/web/20230322194141/https://nakedsecurity.sophos.com/2018/12/20/most-home-routers-lack-simple-linux-os-hardening-security/
https://time.com/4837176/iphone-10th-anniversary/
https://www.howtogeek.com/698532/before-mac-os-x-what-was-nextstep-and-why-did-people-love-it/
https://www.cs.cornell.edu/courses/cs202/2002sp/JavaCcomparison.html
https://building.enlyze.com/posts/writing-win32-apps-like-its-2020-part-1/
https://www.fortunebusinessinsights.com/server-operating-system-market-106601
https://freebsd.org
https://www.wired.com/2012/07/apple-objective-c/

Agheli 11

(Google a) Google LLC. “Set up for Android Development.” Google LLC, ,

source.android.com/docs/setup/about. Accessed December .

(Google b) The Chromium Authors. “Developer Information for Chrome OS Devices.”

Google LLC, , www.chromium.org/chromium-os/developer-information-

for-chrome-os-devices. Accessed December .

(Harbour) Michael González Harbour, “ - : .” Universidad

de Cantabria Departamento de Electrónica, March , www.cs.unc.edu/

˜anderson/teach/comp /papers/posix-rt.pdf. Accessed November .

() . High Level Assembler for z/ z/ z/ Language Reference

Version Release . , , https://publibz.boulder.ibm.com/epubs/

pdf/asmr .pdf. ccessed ovember .

() , Draft Standard for Information Technology—Portable Operating System

Interface (®). , , www.open-std.org/jtc /sc /open/n .pdf.

Accessed November .

(Illumos) illumos.org. Accessed December .

(Intel) Intel Corporation. Intel® and IA- Architectures Software Developer’s Manual

Combined Volumes: , A, B, C, D, A, B, C, D, and . Intel Corporation,

September , cdrdv .intel.com/v /dl/getContent/ , Volume pp. - .

Accessed November .

(Johnson) S. C. Johnson, Dennis M. Ritchie, “Portability of C Programs and the

System” in The Bell System Techinical Journal, Vol. , No. , Part , July–August

, pp. - . Re-published at www.bell-labs.com/usr/dmr/www/

portpap.pdf. Accessed December .

(Jones) Douglas W. Jones. “Punched Cards for Computer Programs.” University

of Iowa Department of Computer Science, December ,

homepage.divms.uiowa.edu/˜jones/cards/collection/i-program.html. Date

derived from image meta data. Speci cally, from “ IBM code.jpg.”

Accessed December .

(Kernighan) Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language.

Prentice Hall, .

(Kernighan) Brian W. Kernighan; Dennis M. Ritchie, The C Programming Language, Second

Edition. Prentice Hall, .

https://source.android.com/docs/setup/about
https://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices/
https://www.cs.unc.edu/~anderson/teach/comp790/papers/posix-rt.pdf
http://web.archive.org/web/20230402022446/https://publibz.boulder.ibm.com/epubs/pdf/asmr1021.pdf
https://www.open-std.org/jtc1/sc22/open/n4217.pdf
https://illumos.org/
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.bell-labs.com/usr/dmr/www/portpap.pdf
https://homepage.divms.uiowa.edu/~jones/cards/collection/i-program.html

Agheli 12

(Kerrisk) Michael Kerrisk, The Linux Programming Interface. No Starch

Press, . pp – .

(Klebnikov) Sergei Klebnikov. “Microsoft is Now TheWorld’s Most Valuable Company After

Apple Falls On Earnings.” Forbes Media, October , www.forbes.com/

sites/sergeiklebnikov/ / / /microsoft-is-now-the-worlds-most-valuable-

company-after-apple-falls-on-earnings. Accessed December .

(Larabel) Michael Larabel. “Firefox Enables FFmpeg Support By Default.” Phoronix

Media, November , www.phoronix.com/news/Firefox-FFmpeg-Default.

Accessed December .

(Leswing) Kif Leswing, “The iPhone decade: How Apple’s phone created and destroyed

industries and changed the world.” , December , www.cnbc.com/

/ / /apples-iphone-created-industries-and-changed-the-world-this-

decade.html. Accessed November .

(Linux) kernel.org. Accessed November .

(Loder) Chip Loder. “How to use SSH for secure connections in macOS.” Quiller Media,

December , appleinsider.com/inside/macos/tips/how-to-use-ssh-for-

secure-connections-in-macos. Accessed December .

(Mackenzie) Charles E Mackenzie, Coded Character Sets, History and Development.

Addison-Wesley Publishing Company, , archive.org/download/mackenzie-

coded-char-sets/Mackenzie_CodedCharSets_text.pdf, pp. . Accessed

November .

(Mahoney) Michael S. Mahoney, An Oral History of Unix. January

, gromnitsky.users.sourceforge.net/lit/an-oral-history-of-unix/book.pdf.

Accessed November .

https://www.forbes.com/sites/sergeiklebnikov/2021/10/29/microsoft-is-now-the-worlds-most-valuable-company-after-apple-falls-on-earnings
https://www.phoronix.com/news/Firefox-FFmpeg-Default
https://www.cnbc.com/2019/12/16/apples-iphone-created-industries-and-changed-the-world-this-decade.html
https://kernel.org
https://appleinsider.com/inside/macos/tips/how-to-use-ssh-for-secure-connections-in-macos
https://archive.org/download/mackenzie-coded-char-sets/Mackenzie_CodedCharSets_text.pdf
https://gromnitsky.users.sourceforge.net/lit/an-oral-history-of-unix/book.pdf

Agheli 13

(Maki) J.N. Maki, D. Gruel, C. McKinney, M.A. Ravine, M. Morales, D. Lee, R. Willson,

D. Copley-Woods, M. Valvo, T. Goodsall, J. McGuire, R.G. Sellar, J.A. Scha fner,

M.A. Caplinger, J.M. Shamah, A.E. Johnson, H. Ansari, K. Singh, T. Litwin,

R. Deen, A. Culver, N. Ruo f, D. Petrizzo, D. Kessler, C. Basset, T. Estlin, F.

Alibay, A. Nelessen, S. Algermissen. “The Mars Engineering Cameras and

Microphone on the Perseverance Rover: A Next-Generation Imaging System

for Mars Exploration,” excerpted from The NASAMars Mission: Seeking

Signs of Ancient Life and Preparing for Sample Return, p. . Springer,

November , www.ncbi.nlm.nih.gov/pmc/articles/PMC . Accessed

December .

(Martins) Daniel Martins, unnamed contributor. “Apple In The s: Why It Nearly Went

Bankrupt.” The Arena Group Holdings, February , www.thestreet.com/

apple/news/apple-in-the- s-why-it-nearly-went-bankrupt. Accessed

December .

(Melanson) Mike Melanson. “Google’s YouTube Uses FFmpeg.” February

, multimedia.cx/eggs/googles-youtube-uses- fmpeg. Accessed

December .

(Menabrea) L. F. Menabrea, Ada Augusta Lovelace, Sketch of The Analytical Engine Invented

by Charles Babbage in Bibliothèque Universelle de Genève, October , No.

. Re-published at www.fourmilab.ch/babbage/sketch.html. Accessed

November .

(Microsoft) Microsoft, “Windows System Overview.” Microsoft, February

, learn.microsoft.com/en-us/previous-versions/cc (v=technet.).

Accessed November .

(Microsoft) Microsoft. “C Keywords.” Microsoft, September , learn.microsoft.com/

en-us/cpp/c-language/c-keywords. Accessed December .

(Microsoft) Microsoft, “Get Started with Win and C++.” Microsoft, January ,

learn.microsoft.com/en-us/windows/win /learnwin /learn-to-program-for-

windows. Accessed November .

(Microsoft a) Microsoft. “Make older apps or programs compatible with Windows.”

Microsoft, , support.microsoft.com/en-us/windows/make-older-

apps-or-programs-compatible-with-windows- d dd -b -bdb - -

eea f . Accessed December .

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686239/
https://www.thestreet.com/apple/news/apple-in-the-1990s-why-it-nearly-went-bankrupt
https://multimedia.cx/eggs/googles-youtube-uses-ffmpeg/
https://www.fourmilab.ch/babbage/sketch.html
https://learn.microsoft.com/en-us/previous-versions/cc767881(v=technet.10)
https://learn.microsoft.com/en-us/cpp/c-language/c-keywords?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/learnwin32/learn-to-program-for-windows
https://support.microsoft.com/en-us/windows/make-older-apps-or-programs-compatible-with-windows-783d6dd7-b439-bdb0-0490-54eea0f45938

Agheli 14

(Microsoft b) Microsoft. “Tutorial: in Windows Terminal.” Microsoft, September ,

learn.microsoft.com/en-us/windows/terminal/tutorials/ssh.

(Microsoft c) Microsoft. “How to install Linux onWindows with .” Microsoft,

October , learn.microsoft.com/en-us/windows/wsl/install. Accessed

December .

(Microsoft d) Microsoft. “ -Linux-Kernel.” Github, October , github.com/

microsoft/WSL -Linux-Kernel. Accessed December .

(Microsoft e) Microsoft. “C# Keywords.” Microsoft, April , learn.microsoft.com/en-us/

dotnet/csharp/language-reference/keywords. Accessed December .

(Miller) Stephan Miller. “How Are C, C++, C#, and Objective-C Di ferent?” Codecademy,

March , www.codecademy.com/resources/blog/c-vs-cplusplus-vs-

csharp-vs-objective-c. Accessed December .

(MinGW) www.mingw-w .org. Accessed December .

(Mozilla) Mozilla. “[JavaScript’s] Lexical grammar.” Mozilla, , developer.mozilla.org/

en-US/docs/Web/JavaScript/Reference/Lexical_grammar#keywords. Accessed

December .

(Nather) Ed Nather, “The story of Mel,” in The Jargon File. May , stu f.mit.edu/

afs/sipb/user/marc/stu f.athena/jargon/jargon .ascii.gz. Accessed

November .

(Nelson) R. A. Nelson; K. M Lovitt, “History of Teletype

Development.” Teletype Corporation, October . Re-published

at web.archive.org/web/ /http://www.thocp.net/hardware/

history_of_teletype_development_.htm. Accessed November .

(NetBSD) netbsd.org. Accessed November .

(Nicas) Jack Nicas, “Apple Becomes First Company to Hit $ Trillion Market Value.” The

New York Times, January , www.nytimes.com/ / / /technology/

apple- -trillion-market-value.html. Accessed November .

(OpenBSD) openbsd.org. Accessed November .

(OpenWRT) OpenWRT. “OpenWRT Hardware List.” OpenWRT, , openwrt.org/docs/

techref/hardware/list. Accessed December .

https://learn.microsoft.com/en-us/windows/terminal/tutorials/ssh
https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/microsoft/WSL2-Linux-Kernel
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/
https://www.codecademy.com/resources/blog/c-vs-cplusplus-vs-csharp-vs-objective-c/
https://www.mingw-w64.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Lexical_grammar#keywords
http://stuff.mit.edu/afs/sipb/user/marc/stuff.athena/jargon/jargon2910.ascii.gz
https://web.archive.org/web/20201105231651/http://www.thocp.net/hardware/history_of_teletype_development_.htm
https://netbsd.org
https://www.nytimes.com/2022/01/03/technology/apple-3-trillion-market-value.html
https://openbsd.org
https://openwrt.org/docs/techref/hardware/list

Agheli 15

(Pereira) Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,

João Paulo Fernandes, João Saraiva. “Energy E ciency across Programming

Languages: How Do Energy, Time, and Memory Relate?” Association for

Computing Machinery, – October , greenlab.di.uminho.pt/wp-

content/uploads/ / /sleFinal.pdf. Accessed December .

(Post) Ed Post, “Real Programmer’s Don’t Use Pascal.” Datamation, Volume

, Number , July . Re-published digitally at www.usm.uni-

muenchen.de/˜ho fmann/ro f/tmp/rpdup.pdf; www.pbm.com/˜lindahl/

real.programmers.html; www.ecb.torontomu.ca/˜elf/hack/realmen.html.

Accessed November .

(Python) Python Software Foundation. The Python Language Reference, “Lexical

analysis.” Python Software Foundation, , docs.python.org/ /reference/

lexical_analysis.html#identi ers. Accessed December .

(Reimer) Jeremy Reimer. “Total share: years of personal computer market share

gures.” Media Group, December , arstechnica.com/features/

/ /total-share. Accessed December .

(Reinhold) Arnold Reinhold. “Punch card from a typical Fortran program.” Wikimedia

Commons, May ,

commons.wikimedia.org/wiki/File:FortranCardPROJ .agr.jpg. Accessed

December .

(Reinhold) Arnold Reinhold. “Teletype Corporation - on display at the

Computer History Museum.” Wikimedia Commons, February ,

commons.wikimedia.org/wiki/File:ASR- _at_CHM.agr.jpg. Accessed

December .

(Reisinger) Don Reisinger. “Steve Jobs Sold NeXT to Apple Years Ago Today.” Fortune

Media Limited, December , fortune.com/ / / /apple-next-

anniversary. Accessed December .

(Ritchie) Dennis M. Ritchie, Ken Thompson, Eric A. Brewer, “The Unix Time-Sharing

System” in Communications of the , July , Volume , Number

. Re-published at landley.net/history/mirror/unix/unix.pdf. Accessed

November .

https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf
https://www.usm.uni-muenchen.de/~hoffmann/roff/tmp/rpdup.pdf
https://www.pbm.com/~lindahl/real.programmers.html
https://www.ecb.torontomu.ca/~elf/hack/realmen.html
https://docs.python.org/3/reference/lexical_analysis.html#identifiers
https://arstechnica.com/features/2005/12/total-share/
https://commons.wikimedia.org/wiki/File:FortranCardPROJ039.agr.jpg
https://commons.wikimedia.org/wiki/File:ASR-33_at_CHM.agr.jpg
https://fortune.com/2016/12/20/apple-next-anniversary/
https://landley.net/history/mirror/unix/unix.pdf

Agheli 16

(Ritchie) Dennis M. Ritchie, C Reference Manual. Bell Laboratories, May . Re-

published at doc.cat-v.org/unix/v /operating-systems-lecture-notes/v /doc/

c.ps and www.tuhs.org/cgi-bin/utree.pl? le=V /usr/doc/c.

(Ritchie) Dennis M. Ritchie, “The Time-sharing System—A Retrospective.”

Bell Laboratories, January , www.bell-labs.com/usr/dmr/www/retro.pdf.

Accessed December .

(Ritchie) Dennis M. Ritchie, “The Evolution of the Unix Time-sharing System” in

AT&T Bell Laboratories Technical Journal No. Part , October ,

pp. - . Re-published at read.seas.harvard.edu/˜kohler/class/aosref/

ritchie evolution.pdf. Accessed November .

(Ritchie) Dennis M. Ritchie, “The Development of the C Language.” Association

for Computing Machinery, April , www.bell-labs.com/usr/dmr/www/

chist.pdf. Accessed November .

(Ritchie) Dennis M. Ritchie, “Unix Programmer’s Manual, November ,

.” Bell Laboratories, January , www.bell-labs.com/usr/dmr/

www/ stEdman.html.

(SQLite) SQLite. “Most Widely Deployed and Used Database Engine.” SQLite, January

, www.sqlite.org/mostdeployed.html. Accessed December .

(Salus a) Peter H. Salus. A Quarter Century of . Addison-Wesley

Publishing, , p. .

(Salus b) Peter H. Salus. A Quarter Century of . Addison-Wesley Publishing,

, pp. – .

(Shirri f) Ken Shirri f. “Iconic consoles of the IBM System/ mainframes, years old.”

April , www.righto.com/ / /iconic-consoles-of-ibm-system .html.

Accessed December .

(Singh) Amit Singh. “What is Mac OS X?” December , web.archive.org/web/

/http://osxbook.com/book/bonus/ancient/whatismacosx/

history.html. Accessed December .

(Singh) Amit Singh,Mac OS X Internals: A Systems Approach. Addison

Wesley, June .

(Sommers) Thoman M. Sommers. “Frequently Asked Questions for FreeBSD .X, .X and

.X.” , web.archive.org/web/ /http://home.ptd.net/˜tms /

hello.html. Accessed December .

http://doc.cat-v.org/unix/v6/operating-systems-lecture-notes/v6/doc/c.ps
https://www.tuhs.org/cgi-bin/utree.pl?file=V6/usr/doc/c
https://www.bell-labs.com/usr/dmr/www/retro.pdf
https://read.seas.harvard.edu/~kohler/class/aosref/ritchie84evolution.pdf
https://www.bell-labs.com/usr/dmr/www/chist.pdf
https://www.bell-labs.com/usr/dmr/www/1stEdman.html
https://www.sqlite.org/mostdeployed.html
http://www.righto.com/2019/04/iconic-consoles-of-ibm-system360.html
https://web.archive.org/web/20120514135706/http://osxbook.com/book/bonus/ancient/whatismacosx/history.html
http://web.archive.org/web/20001027104103/http://home.ptd.net/~tms2/hello.html

Agheli 17

(Stallman) Richard Stallman, “The origin of the name .” May , stallman.org/

articles/posix.html. Accessed November .

(StatCounter a) StatCounter. “Operating SystemMarket Share Worldwide - November .”

StatCounter, December , gs.statcounter.com/os-market-share#monthly-

- . Accessed December .

(StatCounter b) StatCounter. “Browser Market Share Worldwide - November .”

StatCounter, December , https://gs.statcounter.com/browser-market-

share/. Accessed December .

() Software . “ Index for November .” Software ,

December , www.tiobe.com/tiobe-index. Accessed December .

() TeX User’s Group. “Web c.” February , tug.org/texinfohtml/web c.html.

Accessed December .

(Thompson) Ken Thompson; John Mashey; Yan Rosenshteyn, “Thompson, Ken oral history.”

Computer History Museum, February , computerhistory.org/collections/

catalog/ . Accessed October .

(Thompson a) Ken Thompson, Dennis M. Ritchie, “Section Part ” in Unix Programmer’s

Manual. Bell Laboratories, November , www.bell-labs.com/usr/dmr/

www/man .pdf.

(Thompson b) Ken Thompson, Dennis M. Ritchie, “Section Part ” in Unix Programmer’s

Manual. Bell Laboratories, November , www.bell-labs.com/usr/dmr/

www/man .pdf.

(Thompson c) Ken Thompson, Dennis M. Ritchie, “Introduction” in Unix Programmer’s

Manual. Bell Laboratories, November , www.bell-labs.com/usr/dmr/

www/manintro.pdf.

(Treat) Adam Treat, “Qt -preview-feedback Archive, February mkspecs and

patches for LLVM compile of Qt .” February , http://lists.trolltech.com/

qt -preview-feedback/ - /msg .html. Accessed November .

(Turing) Alan M. Turing, “On Computable Numbers, With An Application

to the Entscheidungsproblem.” November . Re-published

at www.cs.virginia.edu/˜robins/Turing_Paper_ .pdf. Accessed

November .

https://stallman.org/articles/posix.html
https://gs.statcounter.com/os-market-share#monthly-202211-202311
https://gs.statcounter.com/browser-market-share/.
https://www.tiobe.com/tiobe-index/
https://tug.org/texinfohtml/web2c.html#Introduction
https://www.computerhistory.org/collections/catalog/102657921
https://www.bell-labs.com/usr/dmr/www/man11.pdf
https://www.bell-labs.com/usr/dmr/www/man12.pdf
https://www.bell-labs.com/usr/dmr/www/manintro.pdf
https://web.archive.org/web/20111004073001/http://lists.trolltech.com/qt4-preview-feedback/2005-02/msg00691.html
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

Agheli 18

() Vintage Computer Federation; Ken Thompson; Brian W. Kernighan, “Ken

Thompson interviewed by Brian Kernighan at East .” YouTube, May

, youtube.com/watch?v=EY q dv_B-o. Accessed October .

() Joint Technical Committee , Subcommittee , Working Group , /

: Committee Draft (C with Technical Corrigendum , , and).

/ , September , www.open-std.org/JTC /SC /WG /www/docs/

n .pdf. Accessed November .

() . “ / / / - C.” / , November , www.open-

std.org/jtc /sc /wg . Accessed December .

(Ward) Keith Ward, “A Brief History of Microsoft Windows.” Lifewire, February ,

www.lifewire.com/brief-history-of-microsoft-windows- . Accessed

November .

(Waterman) AndrewWaterman; Krste Asanović, The RISC-V Instruction Set Manual Volume

I: Unprivileged ISA. - International, December , riscv.org/

wp-content/uploads/ / /riscv-spec- .pdf, pp. . Accessed

November .

() , Rationale for International Standard - Programming Language - C.

, Jan , www.open-std.org/JTC /SC /WG /www/docs/n .pdf.

Accessed November .

(Zaretskii) Eli Zaretskii. “The Project.” July , www.delorie.com/djgpp/doc/eli-

m n .html. Accessed December .

https://www.youtube.com/watch?v=EY6q5dv_B-o
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
https://www.open-std.org/jtc1/sc22/wg14/
https://www.lifewire.com/brief-history-of-microsoft-windows-3507078
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n802.pdf
https://www.delorie.com/djgpp/doc/eli-m17n99.html

	Title
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Works Cited

